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CHAPTER 1

INTRODUCTION

1.1 Motivation

Anatomical Brain MR Image Research

The segmentation of distinct anatomical regions from medical images is a very

common task used to quantify the morphologic qualities of disease. Currently hand

tracing is regarded as a golden standard for brain segmentation, but it is labor in-

tensive and suffers from inconsistency. Consequently, manual segmentation is often

impractical for large-scale or longitudinal projects. The development of robust image

segmentation methods is necessary to overcome the limitations of manual segmenta-

tion.

One important application of anatomical segmentation is to study neurologi-

cal and psychiatric diseases of the human brain. Magnetic resonance (MR) imaging

is one of the most important diagnostic tools used to visualize and understand the

human brain. Segmented brain structures from MR imaging are commonly used to

provide quantitative information about volume and shape. Analysis of the quanti-

tative morphometric measures has identified important relationships between brain

morphology and disease status for many mental illnesses such as Huntington’s Dis-

ease, Schizophrenia, Alzheimer, Parkinson’s, isolated clefts of the lip or palate, and

many others [3, 6, 25, 31, 38].

The automated methods and procedures described in this work are motivated by

the need to segment brain structures from multi-modal MR brain images collected by

large-scale, multi-site, longitudinal studies. The implementation of the tools, however,

is suitable for more general segmentation problems that could include other imaging

modalities or segmentation targets.
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Practical Difficulties

The complex and intertwined human brain structure make it difficult for spatial

locations of image intensities alone to provide enough data for precise segmentation.

The fact that tracing experts come to well-defined segmentation conclusions based

on various external experience related knowledge, such as neuroanatomy, pathology,

physiology and radiology [36] suggests the necessity of more information. In addition,

the segmentation method for MR image analysis is complicated by the intensity non-

uniformity caused by MR machines’ intrinsic nature [16, 33]. These obstacles have to

be addressed for satisfactory segmentation results.

The lack of ability for machines to have brain segmentation strategies compat-

ible to humans is mainly due to lack of relative knowledge about clinical images.

Most of image segmentation algorithms for clinical images depend solely on intensity

values of a single image, but intensity information by itself is often not enough for

an algorithm to give satisfactory differentiation of target structure from high folded

and inter-connected neighbors. Tracing experts come to the well-defined tracing re-

sults based on information gathered from many sources and many subjects, such as

neuroanatomy, pathology, physiology and radiology in order to arrive at a reasonable

image interpretation for any selected scan[36].

1.2 Thesis Overview

In this research, an automated brain segmentation method was investigated

compared to the expert manual tracing method. Chapter 1 provides the introduc-

tion and motivation of automated brain segmentation method. Chapter 2 discusses

necessary background on machine learning. Chapter 3 discusses the implementation

method used in this research. Chapter 4 provides detailed analysis on the results

with reliability tests. Chapter 5 concludes with a summary of important results and

future work.
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CHAPTER 2

BACKGROUND

2.1 Desired Properties

Numerous criteria for assessing the performance of brain segmentation methods

exist. To achieve reliable segmentation methodology in this research, three general

criteria have to be addressed: robustness, accuracy and precision of the application.

It is introduced in the later section for quantitative approaches using mathemati-

cal or statistical formula for testing these qualities. Here we introduce descriptive

explanations for each criterion.

Robustness

The first requirement for reliable segmentation method is robustness against

noise of an image or so-called noise-tolerance. The noise corruption of the clinical

image is challenging problem not only for MR images but also for any other image

modalities. At the same time, however, noise is unavoidable practical issues for

any image modalities. So the intrinsically produced noise of the image should not

cause failure of the segmentation method. The robust segmentation method has to

have the ability to deal with this actual circumstance so that it can be used for

practical image analysis. Another aspect of robustness is that the automated method

must perform similarly across anatomical variability ranging from severely diseased

to normal healthy controls.

Accuracy

The second requirement is accuracy of segmentation. The accuracy is addressed

by measuring the volumetric differences, relative overlap, and similarity index of auto-

mated segmentation to manual segmentation. The automated segmentation method’s

accuracy is improved as volumetric differences approaches zero, and relative overlap
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and similarity index approach one.

Consistency

The lastly emphasized criterion for reliability of our method is consistency.

The consistency is to show the linear relationship between automated segmentation

method and manual tracer for structure volumes that span disease and health popu-

lation.

The fulfillment of these criteria of automated method is very important to pro-

vide he robust image segmentation for clinical researches. Each criteria is investigated

throughout this research.

2.2 General Overview on Machine Learning

To understand a general scheme of machine learning for Artificial Neural Net

(ANN) a conceptual understanding of Artificial Intelligence (AI) is needed. AI is a

study of how to make computers do things, which at the moment people do better [29],

especially for ability of information generalization and pattern recognition. Since the

speed of numerical calculation of a machine exceeds that humans, researchers began

investigating the possibility of an ‘intelligent machine’ and various area of machine

learning has been developed. As the machine learning has several specialty areas,

there are several perspectives of ‘machine learning’. Here we introduce two method-

ologies based on different views of ‘learning’, one is called a symbolic perspective and

the other is a connectionist perspective on machine learning. After a brief introduc-

tion of the two perspectives, the concept followed by ANN will be explained in more

detail.

Symbolic Model Perspective on Machine Learning

Symbolic-oriented AI approach is based on a well-defined domain representation

[22]. A learning process of machine can occur for different interest of domain one by
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one separately like different human specialists in different area. Since the machine

can store massive amount of data, which can be analogous to the human’s memory,

it focused on how information can be expressed in the form to be used effectively.

In this scenario, the learning ability of machine will be proportional to the size of

storage. The database as information storage for machines, it can be considered as

learning while it is ‘storing’ information. The researchers were not just focus on put as

many data as possible, but also more on how relational information, such as hierarchy,

causality, direction and properties between any type of data, could be represented for

machine learning.

Connectionist Perspective on Machine Learning

The connectionists approach is to simulate the functioning of the human brain

biologically using computer [29]. Connectionists are more influenced by biologists and

are more concentrated on how they can simulate the human brain, especially the way

of neuron’s signal exchanges and the human brains organizational structure. Even

though brain reasoning mechanisms are not fully understood, the humans ability to

learn by example exceeds that of machines. Machines, however, are better at rapid

reproducible numerical computation. Connectionists recognized those facts and in-

vented brain-like machines to mimic the mechanical functioning of the human brain.

Constructing a brain-like machine mainly consists of two parts: (1) nodes, which is

analogous to the biological dendrites as a signal receiver and (2) connections, which

are analogous to the biological axons to deliver signals between nodes. J.A Feldman

et al[9] described the concept of nodes as individual computing units intricately con-

nected to each other to allow machine learning. The notion of a more complete neural

network was started by McCulloch and Pitts [19]. A great amount of research interest

in machine learning existed from the mid 1940’s to the early 1970’s, but then came

to virtual halt in the 1970s due to the lack of computational resources [29] to real-

ize the proposed algorithms. Now that rich computing resources have again become
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available, research activity in connectionist model have become popular again.

2.3 Segmentation Method with Artificial Neural
Network

Different artificial neural networks have been employed for image segmentation.

The method using artificial neural network for segmentation were introduced in [2].

Moghaddam improved the ANN segmentation method by adapting Geometric Mo-

ment Invariants (GMIs) to the training stage [23]. One of the popular segmentation

method utilizing ANN is a Self-Organizing Map (SOM) [1, 28, 17] Another popu-

lar approach of ANN is Probabilistic Neural Network (PNN)[24, 14, 37, 4, 34, 8].

The method uses PNN to form probability density function for estimating of each

region of interest. These methods allows the segmentation module to identify unique

distributions other than standard distribution for region of interests. To overcome

the limitations of the semi or fully automated segmentation method by using ANN,

hybrid methods have also been proposed. Reddick et al. suggested the combination

of SOM and ANN for brain image segmentation[27], and Middleton et al proposed a

different approach combining ANN and active contour model [21] . A hybrid method

of wavelet with ANN has also been introduced [18].

2.4 More Background on Artificial Neural Net-
work

The ANN follow the connectionist perspectives and represent a simplified ver-

sion of the human brain. The ANN cannot think like human does, but it is good

at adaptive learning which can be used for pattern recognition or its related work.

Here we introduce the perceptron, the basic building unit of ANN, and basic learning

mechanisms, which will develop further in later chapter for more proper use.
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2.4.1 Knowledge Representation: Perceptron

As briefly introduced previously, the fundamental unit of an ANN is the neuron-

like construct called a ‘perceptron’. Frank Rosenblatt proposed the concept of percep-

tron in 1958 as an artificial neuron. A perceptron’s function is analogous to what the

neuron does in human brain. As a biological neuron receives signals from dendrites

and propagates those signals to the axon to deliver to the next level of perceptrons.

In an ANN, the perceptron aggregates and weights the signals from several inputs

and propagates a single combined signal to the output end.

In addition, a certain number of perceptrons are connected to each other like

numerous neurons do in the nerve system. Other analogous feature between artificial

and biological neurons is the mechanism of signal summation. In human nervous

system, inputs from more than one synapse can result in summation of the synaptic

potentials, which may then trigger an action potential on postsynaptic cells. Input

synapses can be Excitatory, which encourages firing or Inhibitory, which counter acts

on signal summation for postsynaptic cell activation[35]. The perceptrons in an ANN

produce their output status by adding up connected input nodes in the similar way.

A graphical interpretation is shown in figure 2.1

The last characteristic of perceptron is the activation function, which is biolog-

ically analogous to the action potential of a neuron. The biological neuron decides

whether it is going to fire based on the strength of signal. If the strength of signal

is below the action potential, it does not propagate its signal to the next neuron,

otherwise it propagate to the next one. The activation function closely resembles the

action potential mechanism. It takes summed all the input values and decides the

output status.
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Figure 2.1: A perceptron (left), computing unit of ANN, can be analogous to a
biological neuron (right). Like a biological neuron exchange its signal in the form of
potential, a perceptron does with numerical values.

2.4.2 Learning Mechanism: Backpropagation

First a basic procedure for ANN learning mechanism is explained, including how

perceptrons are utilized in the ANN architecture model. A more advanced algorithm,

which is used for our implementation, for learning is developed from this general

approach and introduced in the method section.

2.4.2.1 General Learning Mechanism for ANN

The adjustment process for an ANN’s nodes weights and connection process

so that desired outcome can be acquired for all classes of inputs is the learning or

training of the ANN. In nervous system, there are millions of neurons and usually

several steps are involved in one decision. Each neuron decides its firing status based

on its own input stimulus independently, and the perception is configured similarly.

As figure 2.2 shows, the connection of perceptrons forms the ANN architecture that

consists of one input layer, one output layer and zero or more hidden layers between

the input and output layer. Each layer can have any number of nodes and connections

to neighbored layers’ nodes. The simplest structure is a two-layered ANN architecture

having input and output layer only (figure 2.2) and the architecture with one or more

than one hidden layer is called ‘multi-layered architecture’.
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Figure 2.2: A two-layered (left) and a multi-layered (right) ANN architecture: A two-
layered ANN architecture is the simplest one and multi-layered ANN architecture has
one or more than one hidden layer in-between input and output layer.

Abilities of Single vs. Multi-layered Architecture in Solv-
ing Problem

When we deal with linearly separable problems, the perceptron convergence

theorem, described by Rosenblatt [1963], guarantees that the perceptron will find a

correct solution with large enough number of training. Minsky and Papert [1969]

stated that, however, even if the convergence theorem holds for linearly separable

data classification problem, most of real world data does not provide that condition.

The counter example is XOR problem, which is not linearly separable problem since

we cannot draw a line between different outputs given input(see figure 2.3). Here

the multilayer network plays its role, separation of non-linear cases. Some years

later they found that the multi-layered neural net generally solves any given problem
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Figure 2.3: A solvable and unsolvable graphical example for the simplest ANN: Left
graph shows that the case of linearly separable problem, which can be easily solved
with the simplest ANN, and right represents non-linearly separable problem, which
needs at least two lines for separation and thus cannot be solved with same architec-
ture.

even though the perceptron convergence theorem loses its power, Kurt Hornik [13]

and Cybenko [7] independently proved that multi-layered neural net with one hidden

layer can approximate any given mapping function with any desired accuracy. [29]

Hornik stated that any lack of success in applications must arise from insufficient

numbers of hidden units or the lack of a deterministic relationship between input and

target.

Supervised Learning

The learning process during neural network training involves modifying connec-

tions between nodes to generate the desired output. Even though it is not guaranteed

to converge for multilayered neural networks, several algorithms produce heuristically

best solution. Hinton [12] divided connectionist learning procedure into three broad

classes: 1) Supervised procedures, 2) reinforcement procedures and 3) unsupervised

procedures. This work has focused on supervised learning procedures that used train-

ing data set in the form of input vector coupled with desired output. The general

notion of supervised learning is same to human learning with teacher. When children
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see cat or dog at the first time, they might not distinguish one from the other. After

some time, if teacher tell them right or wrong whenever they saw cat or dog and

guessing about it, they would learn which one is cat and which one is dog in their

own way. One might distinguish them by size, others may by shape of faces. This is

how ANN learns to classify by example. From initial randomized guess about output

for given input, the ANN will learn by comparing its guessed output and given desired

output.

2.4.2.2 Backpropagation algorithm

The backpropagation algorithm is one of the most popular neural network learn-

ing algorithms; it uses gradient descent to find the correct combination of node’s

weights to minimize errors in a known training set. It is necessary to describe the

components and topological network features before describing the backpropogation

algorithm.

Activation Function

The activation function, analogous to the action potential of the biological neu-

ron, has several forms for different purposes. For backpropagation a continuously

smooth activation function is desirable. The backpropagation algorithm looks for the

minimum of the error function in weight space using the method of gradient descent.

The combination of weights that minimizes the error function is considered to be

a solution of the learning algorithm [10]. A differentiable activation function is re-

quired so that computation of gradient descents at every iteration can be used to find

a minimum of the error function. One of the most popular activation functions is the

sigmoid function.

sigmoid(t) =
1

1 + e−tx
(2.1)

The slope of sigmoid function is varied by the constant t, the larger value for t, the

sharper slope. As t goes infinity, it asymptomatically converges to the step function
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[10].

−5 −3 −1 0 1 3 5

Figure 2.4: Sigmoid functions with different value for t: The Black is t = 1, the blue
dashed line is t = 2 and the red dotted line is t = 3. As t value increases, the slope
gets shaper. If the t goes infinity, the sigmoid function asymptotically converges to
the step function.

Fully Connected Network

Fully connected network means that the all the existing nodes are connected

only between neighbored layers. It is general to use fully connected network compare

to partially connected one since the unimportant or negligible connection can be

reflected with a very small valued weighted connection. The example for the fully

connected network can be seen on the figure 2.5.

Figure 2.5: A Fully connected network: All neighboring nodes are fully connected
each other
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Feed Forward Network

The feed forward network has only one direction of data flow: from input layer

to the output layer. The nodes and weights only have effect in the direction of output

layer, so there is no loops or cyclic connections in the architecture. In the figure 2.6

feed forwarded data appears as right directional arrow. This means that the decision

making process can only depend on previous nodes, which are located in the input

nodes side of current nodes.

Backpropagation Algorithm

Back propagation algorithm is the most commonly used method in training the

multi-layer ANN. As previously mentioned, the learning process of ANN is the process

of adjusting weights for hidden nodes that the cumulative error of a given training set

is minimized. The back propagation algorithm starts from very small random weights

assigned to each node as an initial guess. An ANN is known to be good at finding

patterns, the ANN finds the matching patterns of input vector to output vector.

Given a training vector, which is ordered pair of input(xi) and output(ti),(xi, ti), the

ANN guesses the answer at random(gi), then adjust weights by looking at the error

function, fe:

fe =
1

2

∑
|| gi − ti ||

The adjusting weights for next iteration goes in the direction that minimizes for error

function. As mentioned earlier, the gradient is used to compute local minimization.

Calculation of gradient descent needs to be updated at each iteration time and the

equation follows:

∆wi = −γ δE
δwi

, where wi is ith, 5E = ( δE
δw1

, δE
δw2

, . . . , δE
δwn

) , which is the gradient descent for error

function, and γ is the learning rate, which specified by initial parameter. The rep-

etition of the ‘guessing output’ and ‘adjusting weights’ is called ‘training’ for ANN
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model and the data used for training is called ‘training data’. Detailed algorithm is

on the table 2.1.

Table 2.1: General Backpropagation Algorithm for a fully connected, feed foward
network, adapted from [10] and modified.

Feed forward : The input x is fed into the network. Calculate each con-
nected nodes from input layer to the output layer.

Backpropagation: After evaluating the error function, update each nodes’
weights by the rule provided above.

Figure 2.6: A Feed-forward network with backpropagation learning: input data flows
the direction from left to right side (‘Feed Forward Data’ arrow) and learning process
goes on left-to-right direction to adjust nodes’ weights to improve next trial (‘Back
Propagating Learning’ arrow).
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CHAPTER 3

METHOD

The process of ANN segmentatiodn for brain MR consists of three main steps:(1)

Preparation for the training data set, (2) Constructing ANN architecture and training

and (3) test for validation and verification of the application. Iterations of these steps

are essential to optimize the performance of application.

3.1 Training Data Preparation

Training data preparation is the process that takes all the subjects’ multi-modal

images into one well representative vector form to be fed onto the established ANN

architecture. The topology of the ANN architecture will be discussed later. The

training vector is an ordered pair of input (xi) and output (ti) vector: (xi, ti). Each

training vector pair has a corresponding spatial voxel location based on atlas space.

Before extracting training vectors, we have to decide which image type will be used

for training. This section describes selection of subjects for our experiments, different

image types used in the training.

Training Set Selection

24 sets of multi-modal, T1 and T2, MR images were collected in our research

interest domain. Each individual was chosen to have different characteristics in their

volume, size, and shape so that our training set thoroughly covers normal anatomical

variation, and was not biased towards one particular configuration. Out of 24 data

sets, 16 data sets were chosen randomly for training and 8 data sets were used for

testing purposes.
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Brain Atlas

The brain atlas from Montreal Brain Web [5] adopted as our brain atlas. The

brain atlas is used to offer a common spacial location to register in and register out

the images in of our training data set. All subjects were transformed into the brain

atlas space to compute the probability map. The opposite registration, i.e. the brain

atlas registered on the subject image, is used to transform the probability map back

into subject space.

Priors

Priors are spatial probabilistic distribution maps for different structures. The

priors allow us to see the likelihood of the structure’s given voxel location. The

higher value the voxel has for the structure prior, the more probable it is likely to be

the structure. These priors generated using all of 16 training set for every structure

we are interested in: brain, left and right caudate, accumben, putamen, globus and

thalamus.

Feature-Enhanced Images

Multi-modal images and two feature-enhanced images enhance the robustness

of the ANN segmentation to image intensity noise. They also provide complimen-

tary information that does not exist in any single modality. Both feature-enhanced

images were created from acquired multi-modal data. The first feature-enhanced im-

age is a tissue-classified image to enhance intensity uniformity across subjects and the

other is a mean of gradient magnitudes image with emphasis on structure boundaries.

Detailed explanation and a mathematical formula are following.

Tissue Classified Image

A tissue-classified image generated by discriminant analysis [11] is employed to

provide intensity uniformity over different scans and subjects. A major problem for
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automated MR image segmentation is the corruption with a smoothly varying inten-

sity inhomogeneity or bias field [15, 33]. The image suffered from inconsistent inten-

sities across subjects and tissue types can result in a general failure of segmentation.

The method uses discriminant analysis on the multi-modal, T1- and T2-weighted,

images to create soft- or continuous-tissue classified images. A soft-tissue classified

image provides a spectrum of tissue types for white matter (WM), grey matter (GM),

and cerebrospinal fluid (CFS). Pure WM, GM, and CSF have values of 250,130 and

10, respectively and values between these represent composition of more than one

tissue type. The soft-tissue classified image as a normalized image for variability of

different scans allows our method to have global idea about general intensity distri-

butions across different scans.

Figure 3.1: A spectrum reference for a soft-tissue classified image. A pure grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) have values of 250, 130 and
10 respectively. Values in-between pure tissue types are considered to be mixture of
more than one tissue types [11].

Mean of Gradient Magnitudes Image

The average of gradient magnitudes of T1 - and T2 -weighted images is cre-

ated for highlighting boundaries of structures. A T1 -weighted image shows rela-

tively distinct GM and WM boundaries while a T2 -weighted image provides more

on CSF boundaries. In addition, the gradient magnitude along intensity descents

direction traditionally gives contour information of image. By putting all informa-
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tion together, the average of gradient magnitudes for T1 - and T2 -weighted images

allows our method to identify possible boundaries of the brain structures better. The

computation formula follows the below equation.

‖ 5 f(x, y, z)‖ = ‖(∂f
∂x
,
∂f

∂y
,
∂f

∂z
)‖,

where f(x, y, z) is a scalar function.

Grad Avg(T1, T2) =
‖ 5 fT1(x, y, z)‖+ ‖ 5 fT2(x, y, z)‖

2
,

where fT1 and fT2 represent the gradient magnitude for T1 - and T2 images.

3.2 Features for Input Vector

From the above images, multi-modal MR images and feature enhanced images,

features for input vector for each voxel created. Features are selected to represent

well enough for each structure’s characteristics based on spacial information.

Modified Spherical Coordinate to Reflect Symmetry of
Brain

The modified version of spherical coordinates for a given voxel is added to the

input vector as a sub-element as appeared on figure 3.2. The modification is due to

take the symmetry of the brain shape along to the AC-PC line into account in the

learning process. The traditional definition of spherical coordinate system is following:

rho =
√

(x2 + y2 + z2)

phi = arccos(
z

r
)

theta = arctan(
y

x
)

The modified spherical coordinate to factor in the symmetry is following:

rho =
√

(x2 + y2 + z2)

phi = arctan(
|x|
y

)
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theta = arctan(
|z|
y

) (3.1)

This modification allows the ANN application to have general tendency of left and

Figure 3.2: The modified definition of spatial voxel location: The demonstration figure
for modified version of rho (left), phi (middle), and theta (right) for enhancement of
training. The definition of rho follows original definition but definitions for phi and
theta modified to address symmetry of brain structures

right structures.

Neighborhood based on Gradient Descent

Gradient descents are directional vector along probabilities, so that it can have

directional consistence from inner side of the structure to out [26]. Intensity values

along the gradient descents were used as a sub vector for input. The gradient descent

can be thought as a pseudo-normal vector of expected surface for the structure based

on the priors. Taking intensity values along the pseudo-normal vector from a few voxel

inside to outside has a distinct advantage over using neighbor intensity values based

on a rectilinear-based coordinate system. The directional consistency of input vector

can be achieved by using gradient descents while extracting neighboring intensities,

and a considerable amount of data can also be reduced by using only two instead of

six neighbored values.
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Figure 3.3: A neighborhood system comparison between a traditional (left) and an
adapted (right) system: A traditional neighboring system considers 8 directions re-
gardless of structures position while the adapted system here considers only two along
the gradient descents direction of structure priors.

3.3 Training Vector Construction

A set of ordered pair vector, training vector, is constructed for image types and

features described above. Training vector involves four steps.

1. Register the atlas to the subject image

2. Map all the ROI priors to the subject image space using the same deformation

field created in step 1.

3. Extract features for voxel with prior values between zero and one.

4. Assign output vector by given location.

Input Vector

The input vector set is generated using all of above prepared images. The

element of input vector has 16 elements, which can be divided by three sub-vectors.

I = [Sp, Ps,Gr]

Each sub-vector represents corresponding voxels characteristic given location.

• Sp = [ρ, φ, θ]

Modified spherical coordinate system. Definition appeared on equation 3.1.
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• Ps = [s1, s2, . . . , sn]

Set of Boolean variables(si) for representing candidate structures based on spa-

tial location of voxel. If the prior has a value bigger than zero for a given

location, the corresponding variable is set to ‘true’.

• Gr[I][L]

Gr represent intensity values along the prior’s gradient descent for corresponding

Image Type(I). Image Type can be T1, T2, Tissue Classified Image(CL), or

Average Gradient Magnitude(GrMg), and Location(L) can have any integer

value between given neighboring range. Most common range is 1, which means

that one-voxel distance neighbors are considered along the gradient descent

direction. [−1] indicates one voxel prior to the descents opposite direction, [0]

is the voxel’s own intensity itself, and [+1] means one voxel after the current

voxel to the descent’s direction.

Output Vector

Each element of the output vector indicates whether the voxel under considera-

tion voxel belongs one of the structure of interest. One voxel should belong to the one

structure and cannot belong to more than one structure. Anatomical exclusiveness

between different structures of brain is enforced. So if the voxel manually classified

as the structure, which the first element of the vector indicates, only first element

of the vector is 1 and others are 0. The number of structures being included in the

model determines the size of the vector.

Pairing Input and Output Vectors

The training vector is comprised of two vectors: input and output. The pair

is created for every voxel for each structure of interest that has its prior probability

value between 0 and 1. If a voxel has a value of 0 for prior, the training vector is

not generated because there is no possibility the voxel to be a part of structure. In
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the same way, a voxel with a prior probability of 1 is disregarded and considered as

a part of structure regardless of other features.

3.4 ANN Architecture: Multi-layer Neural Net-
work

ANN architecture in our application includes three layers: Input, output and

one hidden layer.

• Input layer: The input layer consists of input vector plus one bias node.

• Hidden Layer: Various number of Hidden nodes were tested and applied on

each structure to find optimal ANN architecture for our model.

• Output Layer: The number of desired output, segmentation, is the number of

nodes in the output layer.

3.5 Enhanced Back Propagation algorithm:
RPROP algorithm

Our network utilizes the RPROP algorithm, which developed by Martin et al

[30] for training. The algorithm is modified in a way to overcome a a drawback

of traditional back-propagation methods: a local adaptation of the weight-updates

determined by the behavior of the error-function. The RPROP algorithm, which

stands for ‘resilient propagation’, performs a direct adaptation of the weight step

based on local gradient information. Without given learning rate or momentum, this

performs its learning by adapting based on previous error status. A key point on its

strength is that it is independent from the magnitude of error only depends on sign.

Individual update-value, ∆, introduced to determine the size of the weight-update:

∆
(t)
ij =


η+ ·∆(t−1)

ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

η− ·∆(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

η− ·∆(t−1)
ij , else

, (3.2)
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where 0 < η− < 1 < η+. Once individual update-value, ∆, obtained, the weight-

update follows:

∆w
(t)
ij =


−∆

(t)
ij , if ∂E

∂wij

(t)
> 0

+∆
(t)
ij , if ∂E

∂wij

(t)
< 0

0 , else

(3.3)

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij (3.4)

Overall algorithm for RPROP appeared on the algorithm 1.

Algorithm 1 RPROP Algorithm

for all weights and biases do
if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0 then

∆
(t)
ij = minimum(∆

(t−1)
ij · η+,∆max)

∆w
(t)
ij = −sign((∂E

(t)

∂wij

(t)
) ·∆(t)

ij )

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij

else if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0 then

∆
(t)
ij = maximum(∆

(t−1)
ij · η−,∆min)

w
(t+1)
ij = w

(t)
ij −∆w

(t)
ij

∂E(t)

∂wij
= 0

else if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
= 0 then

∆w
(t)
ij = −sign((∂E

(t)

∂wij

(t)
) ·∆(t)

ij )

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij

end if
end for

3.6 Generate ANN Model

Training of ANN proceeds uses an RPROP algorithm fed with a training vector,

input-output pair vector. Several number of hidden nodes were trained to find the

optimal ANN architecture for segmentation.

Generation of an ANN model is a learning process for a pattern of input-output

vector. The pair of input and output vector, a training vector, goes into the input

layer of the predefined ANN model to generate an ANN model as described on the
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background section. Traditional way of training ANN model starts with creating an

over-fitted model. The over-fitted model can be identified by error function, which

ideally looks like the solid line of the figure 3.4, which converges asymptomatically as

training progresses. The over-fitted ANN model then are investigated for optimally

trained point with test data vector. The test data vector has the identical format

to the training vector but is created from different data set. Traditionally suggested

shape of performance error function is appeared as a dotted line on the figure 3.4. The

performance error reaches a point; at which the error increases rapidly while train

error decreases continuously. The turning point of performance function is regarded

as an optimally trained time point for the ANN model. After the time point, the

ANN model stop generalizing to memorize a given input-output pattern of training

vector. Because of its failure of generalization of the pattern time after the point, the

error rapidly increases with testing vectors.

Figure 3.4: Error function for train and performance error: Ideally, while the train
error function converges to the certain point as train time progresses, the performance
function reaches a point, at which the error increases rapidly. This minimum critical
point of performance function is regarded as the a optimally trained point.

3.7 Apply completely trained model

After constructing an optimized ANN model, the ANN model is applied to the

test set for validation and verification. An ANN model that satisfies the criteria of
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validation and verification, will be used for large-scale data analysis later. Valida-

tion and verification are described in the 3.8. This section explains the application

process. The ANN application starts with registration of an atlas image onto the

subjects’ images to address anatomical variability. The transformations obtained

from the registrations are to register each spatial probability maps on top of subjects’

spaces. As previously explained, the probability maps are for extracting voxels of

input vectors. The extracted set of input vectors for the subject now goes into the

input layer of the constructed ANN model to compute output by the propagating

mechanism called ‘feed-forward’. The application process is completed by threshold-

ing the ANN output at a certain level to generate binary images for regions of interest.

A simple threshold method can be used for creating reasonable segmentation, which

is described as a part of result section. However a special threshold method is also

developed to satisfy the need for precise segmentation of adjacent structures, which is

the case for sub-cortical brain structures. Remained section of this chapter describes

about the threshold method for neighboring structures.

Threshold for neighboring structures

Even though the ANN model optimized to produce segmentation that matches

the results of manual tracing, it is still problematic to precisely draw boundaries be-

tween adjacent structures. To address this issue, the threshold method for neighboring

structures is developed. An ANN output right before a threshold process has contin-

uous real values between zero and one since it is outcome of a sigmoid function (figure

2.4). These fuzzy segmentations could be interpreted as probability maps for regions

of interest based on spatial location. Since brain sub-cortical structures are not only

mutually exclusive with each other, but also defined without any holes between them,

those fuzzy outputs should take these constraints into account to produce the final

results. By bringing a little of mathematical adjustment before threshold process,

these biological brain definition can be achieved from auto segmentation method as
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well. Firstly, calculate the summation of ANN outputs for all regions of interests for

a subject.

T =
∑
r

Ar

Then, threshold the summed ANN output at certain value.

T̄ = threshold(T )

Finally, if a voxel survives the thresholding, then find which region of interest has a

maximum value of ANN output and segment the corresponding voxel as belonging to

the region with maximum ANN output.

Sr = T̄ · Ar

, where r =index ofmax(A1, A2, . . . , An) for r = 1 . . . n, n =number of regions of

interest, and Sr is for segmentation for region r.

3.8 Validation and Verification Method

Binary result images from the ANN model are validated and verified in volu-

metrically through a set of measuresments: Mean and variance, Relative Overlap,

Similarity Index, Intraclass Correlations and Pearson’s correlation. Each measure-

ment can have different interpretation as regards the relation between manual traced

one and ANN results.

Mean and Variance

The volumetric comparison for sample means and variances conducted at the

very first stage of validation and verification process. These simple measures allow

us to see whether our automated method is worthy of further investigation. If the

difference in volume between automatic and manual segmentation exceeds 10%, the

ANN model will failed to learn the structures. In the same context, if the automated

segmentations variance is larger than four times that of the manuals, this model also

is disregarded for further investigations.
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Relative Overlap(RO) and Similarity Index(SI)

Both relative overlap and similarity index are used to compare the accuracy

of the automated segmentation to the manual segmentation. The Relative Overlap

metric is commonly used to determine correspondence between two different images.

The Definition of RO between structure A and B follows equation 3.5

RO(A,B) =
(A ∩B)

(A ∪B)
(3.5)

where A and B are volume measures for structure A and B respectively. Similarity

index is also used commonly in comparing.

SI(A,B) =
2(A ∩B)

(A+B)
(3.6)

These two metrics may give different number but the tendency should be same. If

two structures have more agreement between their shapes, the measures should both

have higher scores, and vice versa.

Pearson’s Correlation Coefficient (r)

Pearson’s correlation coefficient, simply r, is computed to see correlation be-

tween two groups.

r =

∑
(Ai − Ā)(Bi − B̄)

(n− 1)sAsB
(3.7)

Intraclass Correlation Coefficient(ICC)

Intraclass correlation coefficients (ICC ), as a measure of the reliability between

two different judgments, is employed to interpret our results in segmentation. Out

of numerous definition of ICC, we used the ICC (C,1), which is consistency and

ICC (A,1) that is absolute agreement followed the chart by McGRAW and WONG

[20]. From the chart (figure 3.5), we can conclude that a ‘consistency’ and ‘absolute

agreement’ are our most interest for segmentation value analysis. ICC (C,1) and

ICC (A,1) can be corresponding to the definition of ICC (3,1), ICC (2,1) of Shrout

and Fleissis [32], respectively. Shrout and Fleissis says that if two judges are used
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Effects 
Model 

Column 
Variable 

Measurement 
of Interest 

Type of 
Index 

ICC(C,1)  ICC(A,1) 

Oneway Twoway 

Fixed Random 

Single measurement 

Average measurement 

Consistency Absolute Agreement 

Figure 3.5: A portion of flow chart for selecting ICC values: A ICC consistency
and absolute agreement are selected based on this chart suggested by McGRAW and
WONG [20].

to rate the same number of targets, the consistency of the two rating is measured

by ICC (3,1), treating the judges as fixed effects. To measure the agreement of these

judges, ICC (2,1) is used, and the judges are considered random effects; in this instance

the question being asked is whether the judges are interchangeable [32]. McGRAW

and Wong also suggested that the ICC (A,1) is to measure the absolute agreement

between two groups and ICC (C,1) is interested in correlations. Here we call the ICC -

agreement for ICC (A,1) or ICC (2,1), and ICC -consistency for ICC (C,1) or so called

ICC (3,1). As so McGRAW and Wong mentioned, when the mean differences between

two different judges are small, there will be little difference between ICC -agreement

and ICC -consistency. As mean differences increase, however, ICC -agreement will

decrease while ICC -consistency remains [20].
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CHAPTER 4

RESULTS

Results are presented in three sections. Section 4.1 provides ANN segmentation

results from individually trained model and finding optimized models and section 4.2

analyzed the result from threshold method for neighboring structures. Lastly, the

section 4.3 presents the multi-structure segmentation results from the simultaneously

trained ANN model for all the sub-cortical structures.

4.1 ANN Segmentation Result for Individually
Trained Model

Segmentation results from individually trained ANN models for sub-cortical

structures are presented here. Models are trained for left and right side structures

simultaneously. A total of six sub-cortical regions of interest were trained on 16 image

training data set and tested with an 8 image testing data set.

Selected ANN model features for each experiment are following.

• Multi-Layered ANN with one Hidden Layer

Number of Input nodes varied by different size along the gradient descent.

• A number of neighbors from the current voxel along the gradient descents in

and out. Two different size were tried and denoted by Grad = n, where n is 1

or 2.

• After 4 different number of Hidden nodes were tried for Grad = 1, based on the

result, two different number of Hidden nodes were investigated for Grad = 2.

Number of hidden nodes denoted by HN = h, where h = 50, 60, 70 and 80.

A total of six ANN models were investigated to see how ANN behaves with

different model constructions. Generally, increasing the number of neighbors along

the descent does not result in improvement, and the model with HN = 60 and
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Grad = 1 have the most high perfromance for the most of our regions of interest.

4.1.1 Convergence Plot

The convergence plot contains two error functions at each time point of training

iteration. One is the training error function, which is the mean square error calculated

during training, the other is the performance error function, which uses the identical

measure with test vector set. The training error function is to see whether the model

converges at certain status, and the performance error functions is to identify the

optimally trained point.

To make sure the training model over-fit the data set, so that the optimal

training point can be investigated later, a sufficient number of iterations were specified

fo each training run. The plotted points are acquired every 100 epoch iterations and

ran through 400 iterations.

As we can see in the convergence plot, for each structures with various models

in the figure 4.1, they error function value decreases and the curve flattens as iteration

increase. This means that the model trained well toward the proper direction to mini-

mize the result of error function. The optimally trained time point, which represented

as dotted vertical lines, was all appeared after convergence occurred. Convergence

plot for the entire ANN model appeared on Appendix A.

4.1.2 Selection of Optimal Threshold

Based on the convergence plot the number of iterations is determined for the

optimally trained model. Then the optimal threshold value was investigated, given

that the neural net’s output has values between zero and one. Two measures were

used in determination of the optimal threshold value: Relative overlaps (RO) and

intraclass correlation (ICC) versus threshold value. The figure 4.2,which is graph for

the ANN model with HN = 60 and Grad = 1, shows that the most of maximum

value for ROs were located around threshold value 0.4. At a threshold of 0.4 it is also
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Figure 4.1: Mean Square Error for Individually Trained ANN Model: Train error
(solid blue) and performance error (dotted green) graph for investigation of opti-
mally trained point. The first row of the figure is different structures from same
setting of training (HN = 60, Grad = 1), and the second row represents ANN
model trainings for same structure across different training settings (from left to
right, HN = 50, 60and 70). All ANN model over-fitted well for further investigation.

true that the results have a minumum variance. The variance is represented as dotted

line. Based on the relative overlap measure graph, therefore, we concluded that the

global optimal threshold value is around 0.4. What we can also infer from these RO

versus threshold graph is that the accumben and globus do not have RO value as

high as others. This was the case for most of other training models introduced in this

research. Addtional graphs for other individually trained ANN models are presented

in Appendix A.

Intraclass correlation (ICC ) measures were evaluated followed by RO. As figure

4.3 shows, the ICC agreement has similar shape with relative overlap measure, which

lead us to coincide conclusion of threshold value with RO investigation. The ICC

consistency, however, allows us to see different aspect of training result. The ICC -
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Figure 4.2: Relative Overlap versus Threshold for Individually Trained ANN Model:
Given set of ANN model, the relative overlap computed between manual and ANN
results to find optimal threshold value. The value around 0.4 is chosen as an optimal
threshold value for our model. The training parameter is length of neighbors along
the gradient direction ±1 with Number of Hidden Nodes 60.

consistency tells us that any threshold value between 0.2 and 0.7 would produce the

result as consistent as threshold 0.4. As long as the threshold value stays in the range,

the ANN result will consistent to the manually traced data. Both ICC agreement

and consistency suggests that ANN will produce consistent result to human between

0.2 and 0.7, however if absolute agreement were required for research, the choice of

0.4 for threshold would be more proper. Our choice of threshold was 0.4 for entire

structure as a global optimal.

4.1.3 Segmentation Results

In this section, statistical results for comparison between ANN segmented and

manually delineated images. Each sub-cortical structure applied by ANN models with

various parameters, HN and Grad.
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Figure 4.3: ICC measures versus Threshold for Individually Traind ANN: ICC con-
sistency (Red) and ICC agreement (Blue) for HN = 60 with Grad = 1

Nucleus Accumben

A summary of the ANN segmentation results for the nucleus accumben is shown

in table 4.1. First column shows the manual mean volume and standard deviation

of the 8-test data sets, which is compared with the rest of experimental values. We

observed that the size of neighbors along the descent rather disturbs training with its

larger value. Even though RO or SI shows the best value with the model of HN = 50,

Grad = 1, the highest value for ICC is the model with HN = 60, Grad = 1. The

visual inspection figure for the one of the best and worst result appeared on figure

4.4.
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Table 4.1: Accumben Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 322.1 50.9 - - - -

1 50 324.5(0.75%) 56.5(11.0%) 0.757± 0.0853 0.741 ± 0.0830 0.74 0.73 0.73

1 60 320.6(-0.47%) 62.2(22.2%) 0.752± 0.0874 0.737 ± 0.0832 0.76 0.75 0.72

1 70 319.9(-0.68%) 65.2(28.1%) 0.748± 0.0838 0.744 ± 0.0743 0.66 0.65 0.67

1 80 319.1(-0.93%) 60.6(19.1%) 0.755± 0.0816 0.739 ± 0.0888 0.66 0.64 0.65

2 60 313.8(-2.58%) 62.1(22.0%) 0.747± 0.0832 0.727 ± 0.0806 0.71 0.70 0.72

2 80 302.9(-5.96%) 62.6(23.0%) 0.729± 0.0899 0.722 ± 0.1009 0.58 0.60 0.61

Test Set A Test Set B

Figure 4.4: Visual Example for Individually Trained Segmentation: Accumben.
Grad = 2 and HN = 80 upper row and Grad = 1 and HN = 60 at the lower row.
Manual (Red) and ANN (Lime) segmentation appeared on the view of (121,123,134)
for (Sagital, Axial, Coronal)

Caudate

Summarization of ANN segmentation result for caudates is in table 4.2. The

first column shows the manual mean volume and standard deviation of 8-test data

set to be compared to the rest of experimental values. The optimally trained model

seems to be with HN = 60, Grad = 2, since it has the highest measures for the
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all statistics. The ANN model for caudates only case that has best with increased

number of neighbor along the descent (Grad). We also identified that the ANN model

with HN = 80, Grad = 2, has a relatively low agreement with high consistency. The

visual inspection figure for the one of the best and worst result appeared on figure

4.5.

Even if there exists some variability in their statistical results, the entire results

could be interpreted to show that the model were successfully trained. Shrout and

Fleiss [32] suggested that the ICC value above 0.75 would be good enough for general

application. In addition to that, result comparing to the result presented by Powell et

al. [26], RO measures were increased from 0.83 with similar variances. This indicates

that the newly adapted features for sub-cortical training contributed to the better

result.

Table 4.2: Caudate Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 3178.3 323.2 - - - -

1 50 3315.2(4.4%) 426.0(31.8%) 0.874± 0.0420 0.877 ± 0.0397 0.75 0.79 0.82

1 60 3324.9(4.7%) 407.2(26.0%) 0.872± 0.0425 0.880 ± 0.0388 0.74 0.77 0.79

1 70 3334.6(5.0%) 425.7(31.7%) 0.873± 0.0422 0.877 ± 0.0406 0.73 0.78 0.79

1 80 3178.2(0.1%) 427.4(32.2%) 0.876± 0.0416 0.879 ± 0.0389 0.76 0.79 0.82

2 60 3277.9(3.2%) 416.6(28.9%) 0.879± 0.0416 0.880 ± 0.0392 0.78 0.80 0.82

2 80 3178.2(0.1%) 385.9(19.4%) 0.878± 0.0413 0.878 ± 0.0386 0.58 0.82 0.83

Globus

The Globus structure summarization is in table 4.3. The first column shows the

manual mean volume and standard deviation of 8-test data set to be compared to the

rest of experimental values The relative overlaps or similarity index with HN = 80,



www.manaraa.com

36

Test Set A Test Set B

Figure 4.5: Visual Example for Individually Trained Segmentation: Caudate for
Grad = 2 and HN = 80 upper row and Grad = 2 and HN = 60 at the lower row.
Manual (Red) and ANN (Lime) segmentation appeared on the view of (141,131,142)
for (Axial,Coronal,Sagital) Plain

Grad = 2 can be said by best ICC and other statistics, however indicates that the

ANN model with HN = 60, Grad = 1 is the best choice for optimal ANN trained

model for globus The visual inspection figure for the one of the best and worst result

appeared on figure 4.6.

Table 4.3: Globus Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 1581.2 196.0 - - - - -

1 50 1573.7(-0.5%) 236.2(20.5%) 0.790± 0.0661 0.787± 0.0635 0.77 0.76 0.78

1 60 1577.6(-0.2%) 253.6(29.4%) 0.798± 0.0658 0.792± 0.0610 0.78 0.77 0.80

1 70 1539.2(-2.7%) 256.8(31.0%) 0.790± 0.0682 0.790± 0.0630 0.74 0.74 0.77

1 80 1559.2(-1.4%) 231.7(18.2%) 0.790± 0.0669 0.793± 0.0617 0.78 0.77 0.78

2 60 1567.4(-0.9%) 232.6(18.7%) 0.801± 0.0618 0.805± 0.0593 0.76 0.75 0.76

2 80 1558.4(-1.4%) 238.6(21.7%) 0.807± 0.0612 0.798± 0.0611 0.75 0.74 0.75
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Test Set A Test Set B

Figure 4.6: Visual Example for Individually Trained Segmentation: Globus for
Grad = 2 and HN = 80 upper row and Grad = 1 and HN = 60 at the lower row.
Manual (Red) and ANN (Blue) segmentation appeared on the view of (145,131,120)
for (Axial,Coronal,Sagital) Plain

Hippo campi

Both side of hippo campi were trained with gradient descents size 1 for vari-

ous number of hidden nodes. The result of hippo campi produced one of the most

successful result. As ICC -agreement shows in the table 4.4, these ANN model gave

highly reliable segmentation result compared to manual golden standard. Among all

of our trained ANN model, the 60’s hidden nodes model seems to be thethe opti-

mal architecture with the highest scores for any measurement we computed. The

ICC -consisency also remains at high score for broad range of threshold value, which

means any threshold value between 0.2 and 0.8 would produce consistent result to

the human rater.
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Table 4.4: Hippo campi Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 2198.4 246.1 - - - - -

1 50 2175.4(-1.0%) 260.9(5.7%) 0.865± 0.0471 0.839± 0.00510 0.90 0.89 0.90

1 60 2181.8(-0.8%) 258.8(4.8%) 0.872± 0.0476 0.840± 0.00509 0.91 0.91 0.91

1 70 2173.6(-1.1%) 280.9(13.8%) 0.859± 0.0473 0.836± 0.00512 0.89 0.89 0.90

1 80 2161.3(-1.7%) 259.1(4.9%) 0.870± 0.0461 0.837± 0.00513 0.90 0.90 0.90

2 60 2172.4(-1.2%) 258.4(4.7%) 0.871± 0.0475 0.838 ± 0.0512 0.91 0.91 0.91

2 80 2174.9(-1.1%) 275.0(11.4%) 0.870 ± 0.0463 0.845± 0.0491 0.90 0.90 0.90

Test Set A Test Set B

Figure 4.7: Visual Example for Individually Trained Segmentation: Hippo campi for
Grad = 2 and HN = 80 upper row and Grad = 1 and HN = 60 at the lower row.
Manual (Red) and ANN (Yellow) segmentation appeared on the view of (154,113,109)
for (Axial,Coronal,Sagital) Plain

Putamen

Putamen structure summarization is on table 4.5. First column shows the

manual mean volume and standard deviation of 8-test data set to be compared to the

rest of experimental values. The optimally trained model seems to be with HN = 60,

Grad = 1, which has the highest measures for the every statistics. For putamen, it
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seems like that the larger number of neighbors along the gradient descents (Grad)

especially disturbs in learning process of ANN model. The visual inspection figure for

the one of the best and worst result appeared on figure 4.5. Relative overlap measure

were about to similar to the result by Powel et al. [26], but with larger variances.

While mean volume indicates that ANN result overestimated the putamen, variances

are generally appeared to be higher than human rater.

Table 4.5: Putamen Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 4670.6 321.5 - - - - -

1 50 4809.8(3.0%) 480.6(49.5%) 0.844± 0.0483 0.854± 0.0460 0.64 0.67 0.72

1 60 4788.3(2.5%) 474.4(47.6%) 0.850± 0.0469 0.857± 0.0459 0.72 0.74 0.79

1 70 4737.8(1.4%) 497.5(54.7%) 0.845± 0.0494 0.854± 0.0459 0.70 0.67 0.76

1 80 4764.1(2.0%) 528.7(64.5%) 0.831± 0.0532 0.844± 0.0478 0.56 0.56 0.63

2 60 4726.3(1.2%) 443.9(38.1%) 0.841± 0.0496 0.858± 0.0465 0.65 0.65 0.69

2 80 4733.1(1.3%) 465.4(44.8%) 0.847± 0.0473 0.855± 0.0478 0.64 0.64 0.68

Thalamus

Segmentation results for thalamus were one of the best results out of six sub-

cortical structures. Thalamus structure summarization is on table 4.6. Any trained

ANN model has very high ICC agreement, which is above 0.84 and the highest

one reached at 0.90. Thalamus also has the higher RO measures compared to the

Powells study. By inspecting one of the correlation graph between manual and ANN

segmentation, the fitted line is well along the reference V (manual) = V (ANN) line,

which means perfect agreement.
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Test Set A Test Set B

Figure 4.8: Visual Example for Individually Trained Segmentation: Puamen for
Grad = 2 and HN = 80 upper row and Grad = 1 and HN = 60 at the lower
row. Manual (Red) and ANN (Light Blue) segmentation appeared on the view of
(102,132,134) for (Axial,Coronal,Sagital) Plain

Table 4.6: Thalamus Individually Trained Nets Summary

Grad HN Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

- manual 6428.1 751.9 - - - - -

1 50 6523.3(1.5%) 822.2(9.3%) 0.880± 0.0388 0.878± 0.0447 0.84 0.84 0.84

1 60 6488.6(0.9%) 809.1(7.6%) 0.878± 0.0386 0.876± 0.0456 0.90 0.89 0.90

1 70 6512.4(1.3%) 809.1(7.6%) 0.878± 0.0395 0.878± 0.0449 0.90 0.88 0.90

1 80 6507.3(1.2%) 778.9(3.4%) 0.876± 0.0400 0.879± 0.0463 0.89 0.89 0.88

2 60 6510.9(1.3%) 821.6(9.3%) 0.878± 0.0392 0.880± 0.0430 0.88 0.87 0.88

2 60 6564.6(2.1%) 802.3(6.7%) 0.875± 0.0395 0.881± 0.0429 0.86 0.86 0.86
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Test Set A Test Set B

Figure 4.9: Visual Example for Individually Trained Segmentation: Thalamus for
Grad = 2 and HN = 80 upper row and Grad = 1 and HN = 60 at the lower
row. Manual (Red) and ANN (Purple) segmentation of (114,139,111) for (Ax-
ial,Coronal,Sagital) Plain
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4.2 Segmentation Result with Thresold method
for Neighboring Structures

The threshold method for neighboring structures was applied to the identical

test set and compared with section 4.1 results. The relative overlap measures on

figure 4.10 shows that the method does not disturb any segmentation and the relative

overlap tendency against the threshold were preserved after the threshold applied.

The summary of statistics appear in both figure 4.11 and table 4.2.
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Figure 4.10: Relative overlap measure for the threshold method for neighboring struc-
tures

While the regions were in good agreement with the individually trained ANN

model, such as Hippo campi and thalamus retained their reliability. The globus and

putamen, however, increased their agreement by using the method.

As we observe from figure 4.12, the globus and putamen are adjacent structures. They
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Table 4.7: Threshold result’s Summary for Neighboring Structures from Optimal
Indevidually Trained Nets Summary

structure Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

accumben 337.75(4.9%) 60.841(19.6%) 0.750 ± 0.091 0.734 ± 0.078 0.73 0.75 0.76

caudate 3294.6(3.7%) 419.05(29.7%) 0.878 ± 0.041 0.879 ± 0.039 0.78 0.8 0.83

globus 1573.3(-0.5%) 248.72(26.9%) 0.799 ± 0.063 0.794 ± 0.060 0.8 0.79 0.81

Hippo campi 2188.3(-0.5%) 259.58(5.5%) 0.870 ± 0.047 0.838 ± 0.050 0.91 0.91 0.91

putamen 4796.6(2.7%) 472.67(45.2%) 0.850 ± 0.046 0.857 ± 0.046 0.73 0.75 0.81

thalamus 6495.9(1.1%) 809.63(6.8%) 0.877 ± 0.038 0.876 ± 0.045 0.89 0.89 0.89

are close together, with no gap between them. The threshold method not only cleans

up the overlapped area by creating disjoint definition for each structure, but also fills

any gaps based on ANN output. Those two structures therefore improved more in

their results. The nucleus accumben is adjacent to the caudate, and the result for it

are also improved. Despite of improvement, because of its small size, the statistics

for the accumben nucleus are not as significant as with other structures.
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Figure 4.11: Summerization Graph for Threshold Method for Neighboring Structures
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Overlapped Segmentation result from Individually Trained Net

Cleaned up overlapped area and filled the gaps in between structures

Figure 4.12: Comparison for Threshold method for neighboring structures

In summary, the threshold method helps to improve our individually trained

ANN model segmentation results, especially for closely attached structures. Globus

and putamen increases mostly and some improvement for accumben and caudate were

observed as well. The segmentation result for thalamus and Hippo campi, which

already in good agreement with the gold standard, retained their high degree of

reliability.
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4.3 ANN Segmenation Result for Simultane-
ously Trained Model

Segmentation results with simultaneously trained ANN models are presented

here. Sub-cortical brain structures are defined as being disjoint, and having no spatial

gaps between neighboring structures. In addition, brain structures are defined each

other dependently, so if one structure needed to be defined, the neighboring structure’s

definition should be account. To take account these facts, the ANN model were

trained to recognize all sub-cortical structures simultaneously. In general, the results

show that relatively small structures were improved significantly, however it was not

true for those that had good result with previous segmentation trials. Here we present

how to select the optimal time point with the over-fitted ANN model, a threshold

value choosing strategy, and segmentation results for sub-cortical structures.

4.3.1 Convergence Plot

Convergence plots were investigated in the same way as previous trials to find

the optimal for ANN model. As shown in the figure 4.13, the error functions show

some protruding points on the way their convergence. Except for those points, how-

ever, all convergence plots were flattened as the number of iteration increases. Inter-

estingly enough, the protruding points occured more often as the number of hidden

nodes get larger. It can be interpreted as meaning that there were so many gradient

descents directions for RPROP algorithm to try out to find local minima.

Another observable phenomenon is that the training error came back to the

stable point just after deviated from a convergence line, which is the way of RPROP

algorithm works. The existed plots can be introduced because the algorithm works

in this following way: if current update of weight increases the mean square error,

it will revert to the previous state. After having the minimal value for performance
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error function, we take that as the optimal time point.
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Figure 4.13: Convergence plot for Simultaneously trained model, from left to right
with number of hidden nodes is 50,60,80.

4.3.2 Threshold

The optimal threshold with this method appears to be similar to the previous

training experiment, at 0.4. The ICC versus threshold plot was notable for its in-

crease, especially for the smallest volume sturcture, accumben. Since the accumben

is located next to the caudate, putamen and globus, training all of those structures

simultaneously should have helped to delineate boundaries more distinctly. For the

globus and putamen, however, it turned out that the ICC values were not as high as

independently trained ANN results. The other structures, such as Hippo campi and

thalamus preserved their high status for ICC agreement and consistency.

4.3.3 Segmentation Result

This section describes segmentation results from different number of hidden

nodes for simultaneously trained ANN, ‘Multi-ANN’ model. Even though the litera-

ture said that a larger number of hidden nodes would result in more accurate result

[29], it was not applicable in this case. Especially the number of hidden nodes of 80

shows that the poorest performance on globus. Globally, even though results show

that ICC-agreement were far less significant than previous trials, the ICC-consistency
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Figure 4.14: Intraclass correlation graph for simultaneously trained model with
Grad = 1, HN = 50.

values retained their high values. In the next three sections, we will cover in more

details for each Multi-ANN models’ results of different number of hidden nodes.

Segmentation Result with the HN = 50

Figure 4.14 shows that the statistics between manually traced result and ANN

model produced result. In the graph the reference line (blue) is represented for

‘manual = ANN Result’, and we observed that the fitted line (red) by our data,

assembles a lot of reference. Hippo campi and thalamus shows that fitting line highly

follows the reference line with p-value less than 0.00001. For the accumbens, even

though ICC-agreement suggests that the ANN output is not coincide to the golden

standard, the ICC-consistency values still stays in high and also the p-value is less

than 0.0001. For globus, the ANN segment application tends to over-estimate the

structure than manual segmentation.
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Figure 4.15: Intraclass correlation graph for simultaneously trained model with
Grad = 1, HN = 50.

Segmentation Result with the HN = 60

The data with the HN = 60 shows more promising results of most of structures

except for globus. The caudate, Hippo campi and thalamus has high correlation

with the p-value less than 0.0001, and shows high ICC-agreement values, which is

above 0.8. The putamen and accumben show weaker correspondences in all statistics

than those structures but still p-value is small, which is less than 0.001. The globus

segmentation, however, appeared to be less corresponding to the golden standard.

Segmentation Result with the HN = 80

We observed the weakest training result with the largest number of hidden

nodes, 80 in multi-structure training case. This result makes no differences from indi-

vidually trained net, which showed the weakest training for most of the structures. It

means that the ANN model has begun to memorize the individual input-output pat-
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Figure 4.16: Intraclass correlation graph for simultaneously trained model with
Grad = 1, HN = 60.

terns rather than settling for weights that generally describe the mapping for all case

[29]. The over-fitting problem comes from either the larger number of iterations or

larger number of hidden nodes, so that they can make a ‘look-up table’ for individual

training set.
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Figure 4.17: Intraclass correlation graph for simultaneously trained model with
Grad = 1, HN = 80.
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CHAPTER 5

CONCLUSION

MR imaging is widely used to see brain structures for diagnostic and research

purposes. Sub-cortical brain structure research have been limited by current technol-

ogy’s inability to process large numbers of volumetric images efficiently and reliably.

The automated segmentation method proposed here is motivated by these facts.

In this research, the ANN methodology, one of many approaches in Artificial

Intelligence, was investigated for a sub-cortical brain segmentation application. The

previous work by Powel et al. was adapted and modified for improvement in its usage

and performance. The adapted method was tested in three main aspects: 1) newly

utilized features’ performance with improved registration method, 2) the ability of

threshold method to deal with neighboring structures, and 3) efficiency and reliability

of simultaneously constructed models for all sub-cortical structures.

Before diving into those three investigations in this research, the achievement of

time efficiency should be mentioned first. Even if there is no standard for how fast it

has to be, our method out-performed manual tracings. The manual segmentation task

takes several hours of human labor time for one structure segmentation. In addition, a

human must be trained for several days or weeks to become a reasonably good tracing

expert. The segmentation time for ANN model would depend on performance of the

computer used, however it takes about less than an hour and sometimeseven less than

a half hour with laboratory computer for segmentations. Most of the time is taken

up by image registration, so once registration has been acquired for a subject, the

segmentation process for rest of the structures will finish in a few minutes.

The utilization of feature-enhanced images, which include a soft-tissue classified

image and mean of gradient magnitude image, improves reliability of our segmenta-

tion. It is quantitatively proven that the volumetric overlaps with manual traces has
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been increased to some extent compared with previous work [26]. And it has shown

to be very reliable compared to the manual segmentation. What is more, structures

with a relatively small volumes (nucleus accumben and hippo campi) or vague inten-

sities (globus, thalamus and also nucleus accumben) were successfully identified in

this work.

A mathematically adjusted threshold method also proved to contribute to in-

crease the reliability of the method with negligible time cost. The utilization of

threshold for neighboring structures allows our results to delineate more natural bi-

ological brain structure definitions in regarding of disjoint and fully defined nature

between structures. This method was especially successful for a small volume struc-

tures.

The simultaneously trained ANN model for all of sub-cortical structures showed

that its reliability for most of structures as high as individually trained and optimized

ANN models. In addition, since it does not have to be run more than one times to

get segmentations for several structures for a subject, it is even more efficient than

individually trained ANN model.

Even though our ANN models were specially designed to produce human sub-

cortical brain segmentation, it can be also easily adapted for more general segmenta-

tion work with any available image modalities and desired structures.

There is, however, still room for improvement. Firstly the simultaneously

trained ANN models have met the obstacles in optimizing for each structure. Despite

its time efficiency, it could not be optimized for every single structure, and thus a few

structures’ segmentation showed relatively low reliability compared with individually

optimized one. Secondly, the ANN model is intrinsically not interpretable about its

trained architecture itself, including nodes and their weights. If interpretable ANN

model can be developed by adapting new technology such as computer ontology, it

would give new impetus to ANN segmentation method.
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APPENDIX A

ADDITIONAL GRAPH AND TABLE
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Figure A.1: Error function Graph for HN = 50 and Grad = 1.
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Figure A.2: Error function Graph for HN = 60 and Grad = 1.
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Figure A.3: Error function Graph for HN = 70 and Grad = 1.
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Figure A.4: Error function Graph for HN = 80 and Grad = 1.
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Figure A.5: Error function Graph for HN = 60 and Grad = 2.
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Figure A.6: Error function Graph for HN = 80 and Grad = 2.
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Figure A.7: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 50
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Figure A.8: ICC measeres vs. threshold value for Grad = 1 and HN = 50
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Figure A.9: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 60
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Figure A.10: ICC measeres vs. threshold value for Grad = 1 and HN = 60
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Figure A.11: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 70
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Figure A.12: ICC measeres vs. threshold value for Grad = 1 and HN = 70
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Figure A.13: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 80
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Figure A.14: ICC measeres vs. threshold value for Grad = 1 and HN = 80
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Figure A.15: Relative overlap (RO) measurements versus threshold for Grad = 2
HN = 60
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Figure A.16: ICC measeres vs. threshold value for Grad = 2 and HN = 60
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Figure A.17: Relative overlap (RO) measurements versus threshold for Grad = 2
HN = 800
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Figure A.18: ICC measeres vs. threshold value for Grad = 2 and HN = 80
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Figure A.19: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 50
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Figure A.20: ICC measeres vs. threshold value for Grad = 1 and HN = 50
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Figure A.21: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 60
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Figure A.22: ICC measeres vs. threshold value for Grad = 1 and HN = 60
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Figure A.23: Relative overlap (RO) measurements versus threshold for Grad = 1
HN = 80
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Figure A.24: ICC measeres vs. threshold value for Grad = 1 and HN = 80
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Figure A.25: ICC Corelation graph with reference line (blue) for Grad = 1 and
HN = 50
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Figure A.26: ICC Corelation graph with reference line (blue) for Grad = 1 and
HN = 60
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Figure A.27: ICC Corelation graph with reference line (blue) for Grad = 1 and
HN = 70
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Figure A.28: ICC Corelation graph with reference line (blue) for Grad = 1 and
HN = 80
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Figure A.29: ICC Corelation graph with reference line (blue) for Grad = 2 and
HN = 60
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Figure A.30: ICC Corelation graph with reference line (blue) for Grad = 2 and
HN = 80
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Table A.1: Simultaneous multi-structure segmentation summary with HN = 50

structure Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

accumben 266.62(-17.2%) 54.899(7.9%) 0.709±0.0946 0.7156±0.0877 0.53 0.81 0.82

caudate 3193.8(0.49%) 385.66(19.3%) 0.863±0.0471 0.8646±0.0453 0.73 0.71 0.72

globus 1406.8(-11.0%) 224.24(13.4%) 0.759±0.0784 0.7552±0.0850 0.60 0.46 0.61

hippo campi 2115.9(-3.8%) 285.99(16.2%) 0.853±0.0506 0.8205±0.0566 0.86 0.90 0.91

putmane 4719.0(1.0%) 527.16(62.0%) 0.832±0.0516 0.8454±0.0474 0.64 0.63 0.71

thalmus 6531.2(1.6%) 784.48(3.5%) 0.877±0.0397 0.8756±0.0417 0.90 0.90 0.90

Table A.2: Simultaneous multi-structure segmentation summary with HN = 60

structure Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

accumben 267.56(-16.9%) 59.431(16.8%) 0.724 ± 0.097 0.690 ± 0.100 0.59 0.87 0.88

caudate 3181.7(0.1%) 371.08(14.8%) 0.868 ± 0.043 0.872 ± 0.042 0.80 0.80 0.80

globus 1409.3(-10.9%) 179.89(-8.2%) 0.757 ± 0.084 0.779 ± 0.069 0.47 0.65 0.66

hippo campi 2136.1(-2.8%) 270.91(10.1%) 0.860 ± 0.050 0.829 ± 0.053 0.89 0.91 0.91

putamen 4688.8(0.4%) 479.48(47.3%) 0.839 ± 0.050 0.848 ± 0.047 0.70 0.69 0.70

thalamus 6442.5(0.2%) 781.93(3.2%) 0.880 ± 0.039 0.882 ± 0.044 0.90 0.90 0.90

Table A.3: Simultaneous multi-structure segmentation summary with HN = 80

structure Mean Vol. Std. Vol. RO SI ICC(A) ICC(C) R

accumben 264.43(-17.9%) 62.01(21.9%) 0.717± 0.1141 0.686± 0.0994 0.58 0.88 0.90

caudate 3114.3(-2.0%) 359.5(11.2%) 0.856± 0.0503 0.863± 0.0466 0.74 0.74 0.74

globus 1338.9(-15.3%) 243.4(24.2%) 0.757± 0.0776 0.727± 0.0866 0.38 0.60 0.81

hippo compi 2176.4(-1.0%) 271.3(10.2%) 0.833 ± 0.0585 0.820± 0.0532 0.83 0.83 0.83

putmane 4693.5(0.5%) 526.9(61.9%) 0.829 ± 0.0516 0.841± 0.0480 0.63 0.61 0.68

thalmus 6508.9(1.3%) 770.5(1.7%) 0.861 ± 0.0433 0.873± 0.0442 0.90 0.90 0.90
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APPENDIX B

BRAINSCUT MANUAL

This section is the manual for BRAINSCut, which is implementation of ANN for

sub-cortical brain structure segmenatation application. The program is available at

“www.nitric.org”. The first part explains how to create a model for any population

desired. The second part describes how to apply existing model on the large data

set. The BRAINSCut application configuration and input are provided in an xml

file. The xml file contains all the informaton it needs to complete the task. Here we

introduce how to create well defined xml file to run BRAINSCut, and an example

command line.

B.1 Create Trained Model

B.1.1 Preparation

Preparation process including choosing research interest, atlas and registration

type. The information prepared should go into an xml file, the AutoSegProcessDe-

scription xml element. B.1 is an example input file.

<AutoSegProcessDescr ipt ion>
< !−− . . . . . . −−>

<DataSet Name=”33057700” Type=”Train”>
<Image Type=”T1” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”T2” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”CL” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”SG” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=” [ Image type name ] ”Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
< !−− . . . . . . −−>
< !−− as many as you want −−>

<Mask Type=” le f t putamen ” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Mask Type=” right putamen” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Mask Type=” le f t accumben ” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Mask Type=” [mask type name ] ” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
< !−− . . . . . . −−>
< !−− as many as you want −−>
<Registration SubjToAtlasRegis trat ionFi lename=” [ d i r e c t o r y ] / [ f i l ename ] ”

At lasToSubjRegis trat ionFi lename=” [ d i r e c t o r y ] / [ f i l ename ] ”
ID=”CL” />

</DataSet>
< !−− . . . . . . −−>
< !−− as many as you want −−>

< !−− . . . . . . −−>
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</AutoSegProcessDescr ipt ion>

XML Ex. B.1: XML file example for listing training set. AutoSegProcessDescription
at the first and the last line indicates the start and end of the documentation

Choose Research Population and representative sample

A representative sample should be chosen from the population of interest for

the research. These samples should well cover the population in volume, size, and

intensity distributions. After choosing a set of data, divide those into two groups:

one is for training and the other is for testing and optimization purposes. Usually

one third of the entire sample used for testing and rest of them for training. All the

necessary information regarding training data set for each subject should be appeared

on DataSet. The DataSet has two manditory attributes, Name and Type, and one

optional attribute, OutputDir. For training data set, the optional attribute OutputDir

won’t be used here so will be explained later. The DataSet has three major elements

called Image, Mask and Registration with their own attributes as appeared on XML

example B.1. Image describes the location and type of the image being used for

training, and Mask refers the binary file for region of interest. Lastly, Registration

indicates the location the registered result to be stored.

Choose Atlas

Choice of atlas is important in ANN model construction since it is used as

spacial standard across any subjects. There can be two possible options in selecting

atlas. One is that the brains which has average in size, volume and shape, can be

used as atlas. In this case, this subject will be excluded for training process. The

other choice is to use the synthesized brain by using BrainWeb [5] The declaration of

atlas in the xml file appleared on anywhere between AutoSegProcessDescription but

disjointly with any other element. Naturally, in contrast to declaring any number of

Training data set, we can have only one number of Atlas type DataSet.

<AutoSegProcessDescr ipt ion>
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< !−− . . . . . . −−>
<DataSet Name=” [ anyname ] ” Type=”Atlas ”>

<Image Type=”T1” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”T2” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”CL” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=”SG” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />
<Image Type=” [ Image type name ] ” Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ” />

</DataSet>

< !−− . . . . . . −−>
</AutoSegProcessDescr ipt ion>

XML Ex. B.2: Atlas image file declaration example.

Choose Registration

The choice of registration is very important in image processing, as comparative

analysis requires images to be as closely aligned as possible. Image Registration is

a big subject for image processing research in and of itself. BRAINSCut application

uses script file to do any type of registration so that it can be flexible to variety type of

registration. Any registration out of BRAINS package can be used, and also few well

defined registration scripts are provided with BRAINSCut program. Registration is

also declared in the xml file with Type,Commands, ImageType and ID. The ImageType

indicates that the what kind of image will be used for registration out of several image

listed for data set, and ID labels is for registration specifically in case of we have more

than one declared registration in one file. This ID is identified at the Registration’s

ID of the Training data set.

<AutoSegProcessDescr ipt ion>
< !−− . . . . . . −−>
<RegistrationParams Type = ”ThirionDemons”

Command = ” [ d i r e c t o r y ] / [ f i l ename ] ”
ImageType = ”CL”
ID = ”CL” />

<RegistrationParams Type = ” [ Regis trat ionType ] ”
Command = ” [ d i r e c t o r y ] / [ f i l ename ] ”
ImageType = ” [ ImageType ] ”
ID = ” [ Reg i s t r a t i on ID ] ” />

< !−− as many as you want −−>
< !−− . . . . . . −−>

</AutoSegProcessDescr ipt ion>

XML Ex. B.3: Registration declaration example.
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B.1.2 Generate Probability Map

In addition to those data set declarations, we have to specify region of inter-

est for segmentation in the ProbabilityMap. An xample file appears in the XML

example B.4. The ProbabilityMap has 7 attributes; StructureID, Gaussian, Generat-

eVector, Filename, rho, phi, and theta. Each region of interest has to have its own

ProbabilityMap with distintive structureID, and this structureID should correspond

to the binary file declared under the DataSet as Mask. The smootheness degree is

defined for a Gaussain with any positive number. When the GeneratingVector term

is true, the BRAINSCut application will generate the vector using this probability

map. Otherwise, it will not generate training vectors for the probability maps but will

be referenced to determine candidates structures while neighboring structures being

processed. The Filename gives name for the probability map including location, and

the modified version of rho,phi, and theta defined here.

<AutoSegProcessDescr ipt ion>
< !−− . . . . . . −−>

<ProbabilityMap StructureID = ” l e f t c a ud a t e ”
Gaussian = ” 1 .0 ”
GenerateVector = ” true ”
Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ”
rho = ” [ d i r e c t o r y ] / [ f i l ename ] ”
phi = ” [ d i r e c t o r y ] / [ f i l ename ] ”
theta = ” [ d i r e c t o r y ] / [ f i l ename ] ”
/>

<ProbabilityMap StructureID = ” r i gh t cauda t e ”
Gaussian = ” 1 .0 ”
GenerateVector = ” true ”
Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ”
rho = ” [ d i r e c t o r y ] / [ f i l ename ] ”
phi = ” [ d i r e c t o r y ] / [ f i l ename ] ”
theta = ” [ d i r e c t o r y ] / [ f i l ename ] ”
/>

<ProbabilityMap StructureID = ” [ mask type name ] ”
Gaussian = ” [ any p o s i t i v e number ] ”
GenerateVector = ” [ t rue | f a l s e ] ”
Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ”
rho = ” [ d i r e c t o r y ] / [ f i l ename ] ”
phi = ” [ d i r e c t o r y ] / [ f i l ename ] ”
theta = ” [ d i r e c t o r y ] / [ f i l ename ] ”
/>

< !−− as many as you want −−>
< !−− . . . . . . −−>

</AutoSegProcessDescr ipt ion>

XML Ex. B.4: Probability map declaration example file.
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Now we are ready to run very first command to create spatial probability by

running following command

BRAINSCut −−generateProbabi l i ty −−netConfiguration [ xmlf i lename ]

This command takes while if no registration result presented.

After creating probablity maps for all of region of interest, the next step is to

create training vectors. In addition to the data set declaration, we now need the

parameters for ANN training. This can be varied by cases, we introduces here most

generally applicable parameters.

<AutoSegProcessDescr ipt ion>
< !−− . . . . . . −−>
<ANNParams

I t e r a t i o n s = ”400”
MaximumVectorsPerEpoch = ”700000”
EpochI te ra t i ons = ”100”
Er r o r I n t e r va l = ”1”
Des i redError = ” 0.000001 ”
NumberOfHiddenNodes = ”60”

/>

<NeuralNetParams MaskSmoothingValue = ” 0 .0 ”
Grad i en tP ro f i l e S i z e = ”1”
TrainingFi lename = ” [ d i r e c t o r y ] / [ f i l ename ] ”
Filename = ” [ d i r e c t o r y ] / [ f i l ename ] ”
TestVectorFilename = ” [ d i r e c t o r y ] / [ f i l ename ] ”

/>

<ApplyModel CutOutThresh = ” 0 .05 ”
CutOutGaussian = ”0”
MaskThresh = ” 0 .33 ”
DefDir = ” [ d i r e c t o r y ] / [ f i l ename ] ”
OutputDir = ” [ d i r e c t o r y ] / [ f i l ename ] ”

/>
< !−− . . . . . . −−>

</AutoSegProcessDescr ipt ion>

XML Ex. B.5: Training Parameter setting xml file example.

To create the training vector, the ANNParams and NeuralNetParams elements

are used. The ApplyModel element will not be used until we get to the optimization,

or applyModel steps, so this will be explained later part of the manual. The number

of epoch Iteration between error report is given by EpochIterations, and so total train-

ing iteration will be Iterations times EpochIterations. The MaximumVectorPerEpoch

depends on machine, which how much memory size is available for training. It is

better to read in the whole training vector at once if enough memory is available. To
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generate an overfitted model to determine an optimally trained ANN model, use a

small number for DesiredError. We are using multi-layered neural network with one

level of hidden node. The NumberOfHiddenNodes, in that sense, decides how many

nodes for the hidden nodes for training. Many literature says it is beneficial to have

as many as hidden nodes possible, but practically it takes long time to finish training

with large number of hidden nodes. In our experience in training ANN models for

sub-cortical brain structures, a model with 60 hidden nodes behaves well for most

problems. If this is not working, start from increasing and decreasing the number of

hidden nodes by 10. In this way, the model gives some idea what number would fit

for given problem.

BRAINSCut −−createVectors −−netConfiguration [ xmlf i lename ]

Above commend line will do the job.

B.1.3 Training and Optimization of Model

With those selected parameters and data set, now we can proceed to the training

and optimization of ANN model. Because the training of ANN is the process of

computing weights for each nodes, the time depends on the number of nodes exist in

the model. The following line will start and finish training as instructed in the xml

file.

BRAINSCut −−trainModel −−netConfiguration [ xmlf i lename ]

After overfitted trained model is obtained by running the above command, the

optimally trained point based on train error and preformance error should be searched.

To get the performance error, the performance vector set is created using test data

set. With the performance vector file, the performance error can be obtained by

running following command.

BRAINSCut −−trainModel −−netConfiguration [ per formancexmlf i lename ]
−−doTest

This command line is alomost identical except for –doTest, which will apply the

testing vector file to the created model and then compute mean square error with
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known output vector. With –doTest option, the model will not change their nodes’

weights but just compute performance error. For computing performance error with

–doTest option, the performance vector file should be indicated at the TestVector-

Filename instead of Filename in the NeuralNetParam on the XML example B.5 By

plotting train and performance error, we can find the optimally trained point. For

further explanation on optimization, please see 3.6.

B.2 Apply on Existing Model

Apply the existing ANN model onto new data set is simple process with similar

xml file.

<AutoSegProcessDescr ipt ion>
<DataSet Name=”33057700” Type=”Apply” OutputDir=” [ d i r e c t o r y ] ”>

<Image Type=” [ Image type name ] ” Filename=” [ d i r e c t o r y ] / [ f i l ename ] ” />
< !−− . . . . . . −−>
< !−− same type o f images used in the t r a i n i n g −−>

<Mask Type=” [mask type name ] ” Filename=” [ d i r e c t o r y ] / [ f i l ename ] ” />
< !−− . . . . . . −−>
< !−− same type o f masks used in the t r a i n in g −−>
<Registration SubjToAtlasRegis trat ionFi lename=” [ d i r e c t o r y ] / [ f i l ename ] ”

At lasToSubjRegis trat ionFi lename=” [ d i r e c t o r y ] / [ f i l ename ] ”
ID=”CL” />

< !−− same type o f r e g i s t r a t i o n used in the t r a i n i n g −−>
</DataSet>
< !−− . . . . . . −−>
< !−− as many as you want −−>
<DataSet Name=” template ” Type=”Atlas ”>

< !−− same type o f r e g i s t r a t i o n used in the t r a i n i n g −−>
< !−− . . . . . . −−>

</DataSet>

<RegistrationParams Type=”ThirionDemons” . . . . . . />
< !−− same type o f r e g i s t r a t i o n used in the t r a i n i n g −−>
<ProbabilityMap StructureID=” right accumben” . . . . . . />
< !−− same p r o b a b i l i t y maps used in the t r a i n i n g −−>

<ANNParams
. . . . . .

I t e r a t i o n s=” [ optimal po int ] ”
. . . . . .

/>
< !−− same s e t t i n g but I t e r a t i o n numbers −−>

<NeuralNetParams MaskSmoothingValue=” 0 .0 ” . . . . . . />
< !−− same s e t t i n g used in the t r a i n i n g −−>

<ApplyModel CutOutThresh=” 0 .05 ” . . . . . . />
< !−− same s e t t i n g used in the t r a i n i n g −−>

</AutoSegProcessDescr ipt ion>
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XML Ex. B.6: Training Parameter setting xml file example.

The data set to apply were given as the DataSet labeld as apply and the desired

output directory OutputDir. After assign data set, which trained model applied on,

every other setting should be same but the Iterations, which has to correspond value

of the optimal point above.

BRAINSCut −−applyModel −−netConfiguration [ xmlf i lename ]

As usual, applying ANN model onto the new data set with well-formed xml file

can be performed by above command line.

Choice of optimal threshold

The result file from the ANN model for region of interest is not a binary file

but probability map, which have values between zero and one. Since most of cases

we want to have one binary file for specific region of interest, the proper threshold

value is necessary. Finding proper threshold values can be different for different

research interests; if desired result is consistency to the reference binary image, the

ICC consistency can be measured between reference and ANN results binary images.

Then the threshold value which has the highest ICC consistency value on average can

be used for overall threshold value. If the ANN result has to agree to the reference

binary images, the ICC agreement or Relative Overlap measure can be used. Those

numbers will give the point with the most agreeable threshold value.



www.manaraa.com

78

REFERENCES

[1] Mohamed N Ahmed and Aly A Farag. Two-stage neural network for volume
segmentation of medical images. Nov 1997.

[2] J Alirezaie, M Jernigan, and C Nahmias. Neural network-based segmentation
of magnetic resonance images of the brain. Nuclear Science, IEEE Transactions
on, 44(2):194 – 198, Apr 1997.

[3] F Beacher, E Daly, A Simmons, V Prasher, R Morris, C Robinson, S Lovestone,
K Murphy, and D G M Murphy. Alzheimer’s disease and down’s syndrome: an
in vivo mri study. Psychological medicine, 39(4):675–84, Apr 2009.

[4] J Christensen. Normalization of brain magnetic resonance images using his-
togram even-order derivative analysis. Magnetic Resonance Imaging, Jan 2003.

[5] C Cocosco, V Kollokian, R Kwan, and A Evans. Brainweb: Online interface to
a 3d mri simulated brain database. NeuroImage, Jan 1997.

[6] J Coyle, D Price, and M DeLong. Alzheimer’s disease: a disorder of cortical
cholinergic innervation. Science, 219(4589):11841̃190, Mar 1983.

[7] G Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Jan 1989.

[8] Tim B Dyrby, Egill Rostrup, William F C Baaré, Elisabeth C W van Straaten,
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